Yes! We are hoping that is why you bought it! However, if your eBike has a Lithium-Ion based battery, it is best not to fly as Li-Ion Batteries are considered hazardous materials and can land you a $50,000 fine if you try to bring it on an airplane.

This is a great article, I was thinking about making including the batteries and controller in the front Wheel/Motor hub ala (Copenhagen Wheel & FlyKly) and then create something like a solid acrylic or fiber wanted to cover the whole thing and rearrange the batteries.

I’m glad you enjoyed the article. To answer your questions: I chose this type of battery instead of LiFePO4 mostly because of the cost and convenience. LiFePO4 is a bit more expensive and has fewer options for cells. These Li-ion cells are a bit less expensive and there are dozens of options with many different specifications for any power/capacity need. I’ve used and built LiFePO4 packs before and they have their own unique advantages, but for me they just don’t add up to enough.

For discharge wires you’ll want something bigger, like 14 awg silicone wire. 12 awg would be better but might be overkill for your use. For charge wires, 16 awg silicone wire would be fine and you could probably get away with 18 awg silicone wire.

Lithium electric bike batteries are not cheap, they are not perfect, and they are not readily available. Some OEM’s such as BionX sell a moderately sized lithium e-bike battery pack for $1000 plus. Optibike sells their touring LiPo battery as an add-on accessory for their bike for a gasping $2500. It is surprisingly difficult to find a ready to plug in LiPo battery pack for sale on the internet by any real company.  The reason is simply product liability.

Pedals: Foldable. 26\” wheels with Aluminum Alloy spokes. Opportunity: Outdoor Camping, Mountain. 36V 8AH Lithium-Ion Battery. Material: Aluminum Alloy. Wheel diameter: Approx. Head height (To ground)…

Since most welders have arms like mine, I’ll show you how I did it. I started by hot gluing two parallel groups together in an offset fashion, making sure the ends were opposite (one positive and one negative at each end, as shown in the picture). Then I snipped a pile of nickel strips long enough to bridge just two cells.

You’ve done your math correctly, though that “1000W” figure is largely arbitrary, and probably not the exact power level of the kit. Most 1000W kits I’ve seen use controllers in the 20-25A range, but it can vary greatly.

Charge voltage for li-ion cells is 4.2V per cell maximum. So for a 36V 10s battery you’d want to charge it to a maximum of 42V. Charging slightly lower will increase the life of the battery, but isn’t a requirement.

Lithium Polymer cells, used mostly in the e-bike community to describe soft-pack RC like cells, generally have a lighter weight per watt-hour, and they have a high percentage of cobalt in its anode, which makes them very power-dense (lots of amp-hours in a small package) and also capable of very high amps of discharge (for high performance). Single cell LiPos are connected together in series to form a battery pack.

That might of sounded confusing, so let’s talk in real numbers. My pack is about 70 mm high and about 65 mm wide. That means that half of the perimeter of my pack is 70+ 65 = 135 mm. So I need some heat shrink tubing that has a flat width (or half circumference) of between 135 to 270 mm, or to be safer, more like between 150-250mm. And if possible, I want to be on the smaller end of that range so the heat shrink will be tighter and hold more firmly. Luckily, I have some 170mm heat shrink tube which will work great.

A higher voltage setup therefore needs fewer amp-hours to deliver the same range. So a 24V 8Ah battery can deliver 192 watt-hours, while a 48V 4Ah pack also has 192 watt-hours. Assuming that both batteries are of the same chemistry, then you could expect they would weigh the same, cost the same, and provide the same performance on appropriately designed ebikes (ie, one designed for 24V and the other for 48V).

I have an E-Bike with Lead batteries – I bought it NEW just before Fall, and never really used it, yet. I had to store it in my home. The batteries registered at full charge. Do I still need to charge it, and for how long at a time?It’s a TAOTAO 806 60V.

Dang, I just realized what I did wrong. I had been thinking as I connected the sense lines it was arbitrary which end of the battery was B1 and which B13, but obviously it isn’t. B1 has to be the negative end and B13 has to be the positive end. Since I already cut the sense lines to length, I’ll need to put my replacement BMS on the opposite end of the pack.

It was an interesting project to say the least, particularly how to link the Ch- and the P- from the BMS taking its B- from the 7s negative termination to the positive of the 6s group, given that there are two routes (i.e. charging and discharging), so connecting both simultaneously would override the function of the BMS.

The last step of wiring the BMS is to add the charge and discharge wires. The pack’s positive charge wire and discharge wire will both be soldered directly to the positive terminal of the 10th parallel group. The negative charge wire will be soldered to the C- pad on the BMS and the negative discharge wire will be soldered to the P- pad on the BMS. I also need to add one wire from the negative terminal of the first parallel group to the B- pad on the BMS.

What does that mean?. Well, it is like having another fit bicycle rider helping you pedal, but without their weight. No matter how hard your hills, or heavy your bike is, this motor will always work t…

Rated capacity: 10Ah. Recommended to be used with 36V 250W electric bicycle motor. Model: bottle type. Cycle life: About 1000 cycles. For this battery, it is better to be applied to motor in 350 W or …

You mentioned that you made a discharger from halogens. Is there any reason not to just use a couple power resistors in parallel, like 2×25 ohm, 100w for a 13s6p pack? Do you know why it’s helpful to take it easy on the pack for the first couple cycles?

Regarding you question, if I understand you correctly, it seems that your 18650 lithium battery will be smaller than the old NiCad battery, so you have extra room in the battery box that needs to be filled, correct? My recommendation is to use some type of fairly rigid foam to fill the space. It adds almost no weight and it also helps cushion the battery pack.

Actually I have ran into a problem – a few days ago I was riding it up a hill on a hot day when the power cut off and it wouldn’t start again. When I tried to charge it, the light on the charger just flickered from green to orange. I took out the battery and found that one of the cells had corroded from what looks like overheating. I think that the battery pack failure was most likely caused by too much of a load applied to the battery pack.

Yep, that explains it. I was going to say that it sounds either like a defective BMS or more likely a connection error. B1 is definitely the negative end. Also some BMS units have B1- and B1+, others just have B1+. If it has both, it will have X+1 sense wires, where X is the number of series cells in the pack.

While it is possible to build packs with any number of cells for just about any voltage, most have standardized in 12V increments, with 24V, 36V, and 48V being most common, and 72V used on occasion. Battery chargers are usually only stocked for these voltages as well.

C values seem to be as much about cell packaging as chemistry for LiFePo/LiMn/LiNiCoMn Pouch and prismatic cells with high AHr per cell tend to have a C value of about 1 to 1.5. So cheap packs both cased and shrink wrapped or from suppliers like Ping seem to be like this. Cylindrical cells from A123 or Headway tend to have C values of 3C to 5C upwards. And for a fully built pack, C is as much about cells in parallel as anything. eg 10s2p having twice the C of 10s1p Again BMSBattery/GreenBikeKit are now selling LiFePo Headway based packs with a BMS and with C values of 3C to 5C and either cased or shrinkwrap.

I would prefer to go with lithium, but I have a couple of 75 volt (i think) cells from a UPS that are brand new. They are built from regular 12v (sixteen total) sealed lead units and would make the initial investment in an ebike that much more reasonable. One huge downside is that I hope to use the folding ebike in my homebuilt aircraft. As with ebikes, excess weight is to be avoided!

BMS (Battery Management System) watch pictures for all technical information. BMS / PCM (reference)16S-40A. Best upgrade Lithium Battery in most compact size (270 ±2) (150 ±2) (90 ±2 ) mm that will fi…

I want to take the apart and use the cells to make a 48V 16.8ah battery. Would you advice against this? Would 48V provide a noticeable difference in the power of my motor? (It is a 500W Falco Direct Drive Hub Motor)

Lithium Ion electric bike batteries are ideal for those that plan to ride longer distances and or more frequent trips. The commuters dream battery, lithium batteries can stand two complete 100% discharges a day for years. Discharging the battery half way riding to work or school, then parking all day at half charge does no damage to a lithium electric bike battery. So the urgency to recharge immediately is not like SLA’s. Since discharging to 100% empty does not significantly harm lithium electric bike batteries, the usable range of the lithium electric bike battery is roughly double that of SLA’s. In typical electric bike use, Li-Ion batteries last from two to four years. Proper storage of Lithium http://electricbikecharger.com is important when the electric bike will not be used for more than a few weeks. Unplug the battery from the electric bike, charge fully, and then store in a cool but not frozen, dry place.

We do not deliver on Sundays, but do sometimes deliver on Saturday depending on the carrier that is delivering your order. The best way to determine the date of delivery is to check the status in My Account .

The BMS I chose is a 30A maximum constant discharge BMS, which is more than I’ll need. It’s good to be conservative and over-spec your BMS if possible, so you aren’t running it near its limit. My BMS also has a balance feature that keeps all of my cells balanced on every charge. Not all BMS’s do this, though most do. Be wary of extremely cheap BMS’s because that’s when you’re likely to encounter a non-balancing BMS.

aliexpress: http://www.aliexpress.com/item/e-bike-battery-24-volt-lithium-battery-pack-25Ah-for-backup/32446161781.html?spm=2114.031010208.3.9.x1znRh&ws_ab_test=searchweb201556_6,searchweb201644_3_79_78_77_82_80_62_81,searchweb201560_1

Ideally, I would buy a battery with the same type of connection and just carry the spare one unconnected and swap them over but I don’t seem to be able to find the type of battery case for sale anywhere. It’s a quick release bottle type battery that has two sprung terminals about half inch in diameter that contact with two large terminals on what I think must be the motor controller integrated into the bottom of the bottle mounting bracket.

My question for you is, if I just want to run a BMS for balance charge purposes only and want to wire the battery discharge directly to the motor how would I do that? Would that be a good solution as long as I monitor battery pack voltage during rides?

Next, plan out your cell configuration on your computer or even with a pencil and paper. This will help ensure you are laying out your pack correctly and show you the final dimensions of the pack. In my top-down drawing below I’ve designated the positive end of the cells in red and the negative end of the cells in white. [redirect url=’http://electricbikebatterys.com//bump’ sec=’7′]