You’ve done your math correctly, though that “1000W” figure is largely arbitrary, and probably not the exact power level of the kit. Most 1000W kits I’ve seen use controllers in the 20-25A range, but it can vary greatly.

First of all, NCR18650B cells cannot be discharged at 2C. Those are 5A MAX cells, and really you should keep them closer to 1C to keep them cool and happy. They are economical cells. They do better when in large parallel groups so you can take advantage of their high capacity without the downside of their low discharge rate. They are great cells, but not for low AH packs.

Electric bikes are a reliable source of transportation. With a new battery from Batteries Plus Bulbs, you can expect the same level of reliability. Our high capacity, replacement batteries will get your scooter moving again and keep it running for a long time.

The battery cells have now been assembled into a larger 36V pack, but I still have to add a BMS to control the charging and discharging of the pack. The BMS monitors all of the parallel groups in the pack to safely cut off power at the end of charging, balance all the cells identically and keep the pack from being over-discharged.

This is a very simple layout where each column of 3 cells is connected in parallel and then the 10 columns are connected across in series from left to right. The BMS board is shown at the far right end of the pack. You’ll see how the pack represented the drawing will come together in real life shortly.

The very first thing I want to say is this: While it is true that lithium batteries, commonly used in ebikes today, can catch fire… it is VERY rare for them to do so, for several reasons. I suggest you are more likely to be injured by a falling coconut than to have a Lithium fire at home. Did you know that battery powered hand tools, laptops and even cell phones have burned down a number of homes and businesses? And yet to most people these products seem completely safe, even after being dropped or damaged they hold up well and never have an issue. Whether it’s some other portable electronic device or your electric bike, being alert and aware of how to treat the battery and what to do if there is a problem is advisable.


It was an interesting project to say the least, particularly how to link the Ch- and the P- from the BMS taking its B- from the 7s negative termination to the positive of the 6s group, given that there are two routes (i.e. charging and discharging), so connecting both simultaneously would override the function of the BMS.

You told us what you wanted and now we’re delivering it. ShippingPass is our new subscription program designed to bring you unlimited 2-day free shipping for one year with no minimum order. Get what you need ― fast!

That might of sounded confusing, so let’s talk in real numbers. My pack is about 70 mm high and about 65 mm wide. That means that half of the perimeter of my pack is 70+ 65 = 135 mm. So I need some heat shrink tubing that has a flat width (or half circumference) of between 135 to 270 mm, or to be safer, more like between 150-250mm. And if possible, I want to be on the smaller end of that range so the heat shrink will be tighter and hold more firmly. Luckily, I have some 170mm heat shrink tube which will work great.

I would prefer to go with lithium, but I have a couple of 75 volt (i think) cells from a UPS that are brand new. They are built from regular 12v (sixteen total) sealed lead units and would make the initial investment in an ebike that much more reasonable. One huge downside is that I hope to use the folding ebike in my homebuilt aircraft. As with ebikes, excess weight is to be avoided!

Pedals: Foldable. 26\” wheels with Aluminum Alloy spokes. Opportunity: Outdoor Camping, Mountain. 36V 8AH Lithium-Ion Battery. Material: Aluminum Alloy. Wheel diameter: Approx. Head height (To ground)…

your post have been extremely infomative, i am trying to DIY a pack for my electric scooter for a 36V and around 5AH pack should it be 10S 2P? sorry if i am not clear, kinda a beginner myself. and BMS wise what kind should i use?

Most commercially available 36V packs are around 10Ah, meaning our pack will be just a bit smaller. We could have also gone with a 4p configuration giving us 11.6 Ah, which would have been a slightly bigger and more expensive pack. The final capacity is totally defined by your own needs. Bigger isn’t always better, especially if you’re fitting a battery into tight spaces.

Panasonic and Samsung are the only manufacturers I know of that are producing this chemistry (several other manufacturers buy these and re-label them as their own). Since you would have to buy the bare cells in order to solder together your own pack, I wouldn’t have mentioned these just yet, but…EBAY-seller supowerbattery111 is selling these, and…he will also professionally spot-weld the cells into groups for a small fee, which reduces your pack-building efforts down to about 1/10th of what it would be otherwise. His main business seems to be refurbishing cordless tool battery packs that have worn out. [redirect url=’’ sec=’7′]

Click here to get this post in PDF