One question regarding the specific battery BMS you used in this build: It uses a different wire for charging vs discharging the battery. Does this mean that the regenerative braking feature cannot be used for this battery?

hello, firstly i would like to say that i think this is a brilliant article its really helped me understand a lot more about how this works and how i can use a similar system for my project but i am a little confused and i was hoping to pick your brains….

Your method of using the tubes might work but I still worry about how much current you could safely pull out of those connections. You can definitely charge the way you described but trust me, charging 2 or 4 cells at a time gets VERY frustrating. You’ll be spending days, maybe a week, getting your battery all the way charged again.

Extra shipping cost or other cost. We only can send batteries by TNT recently. So sometimes you maybe need to pay the extra shipping cost. You can use this link to pay the extra shipping cost. And sometimes, you may need to add some articles. You also can use this link to pay the additional cost.

Most lithium batteries that are designed to mount to ebikes also come with some form of locking system. These have varying degrees of effectiveness. The type with a little pin that slides into a thin sheet of steel are the easiest to steal by mangling the thin steel locking plate. Just take a look at your battery and ask yourself “how easily could I steal this battery if I had some basic hand tools and a 60 second window of opportunity?”

Do you by any chance have some spare parts you can swap in? A spare controller would you let you know if the controller is faulty and tripping early. Another battery would show you if the problem was battery related.

I finally made it happen on BMS #3 (the unfortunate thing about AliExpress is that every dumb mistake that kills a part is another month added to the project) and the battery seems to work great, though it only has a couple miles so far.

Nickel Cadmium was the old standard for rechargeable consumer cells in the familiar AA, C, 9V series. They are known for robust characteristics, a good cycle life, and high discharge capabilities. They are still widely used in cordless power tools, R/C toys and similar applications that demand large currents, but for nearly everything else NiCad’s have been replaced by NiMH and Lithiums.

I’m glad you enjoyed the article. To answer your questions: I chose this type of battery instead of LiFePO4 mostly because of the cost and convenience. LiFePO4 is a bit more expensive and has fewer options for cells. These Li-ion cells are a bit less expensive and there are dozens of options with many different specifications for any power/capacity need. I’ve used and built LiFePO4 packs before and they have their own unique advantages, but for me they just don’t add up to enough.

BMS’s aren’t required, they just make life easier. As you mentioned, if you don’t use a BMS then you’ve got to diligently monitor your cells and use balance charging to manually balance your cells. A BMS just takes care of this hassle for you. A low quality BMS can cause problems, but good quality BMS’s shouldn’t risk cell damage.

It makes very little difference whether you have a small geared motor, a large direct drive motor, or a mid-drive motor. The mileage and range figures for a given battery have to do with how you use the ebike, not which motor system is on the bike.

If you don’t have an actual heat gun, you can use a strong hair dryer. Not all hair dryers will work, but my wife’s 2000 watt model is great. I own a real heat gun but actually prefer to use her hair dryer because it has finer batteries for electric scooters canada and a wider output.  Just don’t go mess up your wife’s hair dryer! [redirect url=’’ sec=’7′]

Click here to get this post in PDF