I am planning on making a 6S2P LifePO4 pack that has a voltage of 19.2V. I have a 6 cell BMS that does balancing (and that is intended to work with 6 LifePO4 cells). I need some help selecting a charger to charge this pack, however, particularly regarding the charger’s voltage specification.

By entering the Sweepstakes you agree to receive email newsletters periodically from Electric Bike Technologies LLC. You can opt-out of receiving this communication at any time by clicking the unsubscribe link in the newsletter.

Most lithium batteries that are designed to mount to ebikes also come with some form of locking system. These have varying degrees of effectiveness. The type with a little pin that slides into a thin sheet of steel are the easiest to steal by mangling the thin steel locking plate. Just take a look at your battery and ask yourself “how easily could I steal this battery if I had some basic hand tools and a 60 second window of opportunity?”

In 2012, the future of LiPo in e-bikes looks bright. Most large EV manufacturers are focusing on LiPo as the lithium battery power of the future. LiPo technology is developing fast and becoming safer, more reliable, cheaper, and with a higher life expectancy. Since LiPo cells are being developed to be safer, more efficient and more economical (mostly for main stream products such as the automobile) the electric bicycle industry will be able to piggy-back and utilize the newly available technology at an affordable price. Currently, the latest “best” chemistry involves Manganese-Cobalt which is a lot more stable than the cobalt chemistry of the past.

12V increments are easier to do with LiFePO4 due batteries electric bikes the 3.2V per cell. So for 12V, 24V, 36V and 48V they go 4 cells, 8 cells, 12 cells and 16 cells. Li-ion is more annoying because the 3.7V per cell doesn’t play as nicely. The general convention for the same 12V increments is 3 cells, 7 cells, 10 cells, and 13 or 14 cells. 3 cells is just a bit low for a 12V system (about 11V nominal) but will work for most applications until the voltage drops to about 9.5 or 10V depending on your device’s cutoffs. Regarding the balancing issue, if you’re using those packs that claim to remain in balance then I’d imagine you can just trust them. If their packs had problems with balance then they’d probably be having tons of returns. Worst come to worst you can occasionally open the case and measure the cells to make sure they are all staying balanced. One word of advice: be very careful with the series/parallel switch setup. If you make a mistake or the switch melts you could end up shorting your batteries and ruin the whole lot…

Note that in the article it says that LiFePo is the most commonly used chemistry. I think that depends on where you are looking. I suspect that LiNiCoMn or the older LiMn is actually most common in terms of total unit cells because they’re the cheapest and get used in the low end E-Bike market in China.

The article was extremely informative, thank you. I’ve found everything but am struggling with good cells. At Aliexpress there are many choices but I’m struggling to get near the $2/cell mark you mentioned as a limit for decent cells and still find performance criteria of a good battery (or at all). So far I’ve found NCR18650B but it appears to have a 2C discharge rating for a 3400mA cell. At 4P this is more than enough but seems low for LiIon so I wonder if it is good? The price is $163 shipped to USA for 10s 4p 40 pieces to make 36v 13.6Ah. After adding shrink wrap, BMS and nickle strips I’m at $213 before buying a spot welder ($200). I can buy on the same site a 36v 15Ah Li Ion pack for $248. https://www.aliexpress.com/item/US-EU-No-Tax-DIY-lithium-18650-battery-pack-15AH-36V-Electric-Bike-battery-for-36V/32757165516.html?spm=2114.13010208.99999999.274.JmcpBS

Shenzhen Tianlihe Technology Co.,Ltd, founded in 2005, concentrate on design and manufacture lithium battery packs for over 10 years. Our R&D team are experts in lithium ion battery solutions and smart BMS development with communication protocols,like CAN Bus…We really love our job and work hard for your pleasure.

Also, since the negative electrode is the entire bottom and sides of the cell (formed by a metal cylinder) these cells can take some bouncing around. Be aware if you scratch the plastic wrap on the cylinder, the metal shell underneath is energized to the negative electrode, so…an electrical short may be possible.

2. Agreement to Rules: By participating, you agree to be fully unconditionally bound by these Rules, and you represent and warrant that you meet the eligibility requirements set forth herein. In addition, you agree to accept the decisions of Electric Bike Technologies LLC, as final and binding as it relates to the content. The Sweepstakes is subject to all applicable federal, state and local laws.

One term you will frequently come across is the ‘C’ rate of a battery pack. This is a way of normalizing the performance characteristics so that batteries of different capacity are compared on equal terms. Suppose you have an 8 amp-hour pack. Then 1C would be is 8 amps, 2C would be 16 amps, 0.25C would be 2 amps etc. A higher ‘C’ rate of discharge is more demanding on the cells, and often requires specialty high rate batteries.

To determine how much power you need, you’ll need to determine the voltage you want and the capacity you need to supply that power (voltage times current). Read this article to learn more about calculating your ebike’s power: http://www.ebikeschool.com/myth-ebike-wattage/

Your product will be shipped to its final destination to arrive in 2 business days or faster. If your order is placed before the 11 a.m. PST cutoff time, then it will ship that day and arrive 2 business days later. If your order is placed after the 11 a.m. PST cutoff time, we will do our best to process it the same day but may need an extra day.

NiMH-Nickel Metal Hydride. This was the battery of choice for military application and the first-gen Prius hybrid car. Very reliable and stable, with a long cycle life. It has a high nickel content, so its expensive now (but the nickel can be re-cycled). With a low C-rate, you need a very big battery to draw high peak amps. Perhaps not a problem on a car with its huge battery pack, but on a bicycle, the smaller pack restricts the user to low amp-draw performance.

Next, plan out your cell configuration on your computer or even with a pencil and paper. This will help ensure you are laying out your pack correctly and show you the final dimensions of the pack. In my top-down drawing below I’ve designated the positive end of the cells in red and the negative end of the cells in white.

Also changing the fuse to a higher one could cause the wires to start a fire and the whole house would burn down if the wires are not thick enough. Also in sweden a fuse gets bigger as they are rated higher so you can fit a 20A fuse in a 10A slot, for safety.

Yes, that’d work, but I’d get an additional 7s battery so you have 20s total. Also, you should know that the older your original 48V battery is, the more time it will take your new 72V combined battery to balance, as the first 13 cells will likely have less capacity in comparison to the newer cells. I made a video recently showing how to do this upgrade that you’re talking about: https://www.youtube.com/watch?v=9KHo-T74IWA

If you want to step up a notch on the quality ladder, here is another good charger that I prefer even more, though it’s a bit more expensive: http://www.aliexpress.com/store/product/aluminum-shell-36V-42V-2Amper-Li-ion-Lipo-battery-charger-high-quality-charger-for-10S-li/1680408_32275847257.html [redirect url=’http://electricbikebatterys.com//bump’ sec=’7′]

Click here to get this post in PDF