hello sir. nice guide FOR battery pack li-ion… i will try an electric bike kit for my 26″ MTB. and buy 1000w hub motor kit. i can solve my battery problem (expensive you know) with li ion pack. i have some questions,

36V 10ah Lithium battery (Included with the battery is the charger and mounting Bracket). Standard 26 in Front Wheel 500w brushless motor hub (works with V-brake or disc brakes). Pedal Assistance syst…

i am building a 10s4p 36v 18650 battery pack for my ebike, what gauge silicon wire you recommend for discharge and charge wires, i am using 2.5 amp 42.5v li-ion battery charger bought from ebay(http://www.ebay.com/itm/281639749374?_trksid=p2057872.m2749.l2649&ssPageName=STRK%3AMEBIDX%3AIT), and 10s 36v 30amp bms bought from ebay(http://www.ebay.com/itm/182247900118?_trksid=p2057872.m2749.l2649&ssPageName=STRK%3AMEBIDX%3AIT) and 500w 36v controller.

With a budget in mind, here is a 36V charger (output 42V, exactly what a 36V li-ion pack needs) that I have used and found to be a good budget charger. It’s not super fast, at only 2A, but for just $20 shipped, it’s a great deal. You might have to wait about 3 weeks for it arrive from China though. http://www.aliexpress.com/item/100-240VAC-42VDC-2-0A-Lithium-LiPo-Battery-Charger-E-Bike-charger-suitable-for-10S-36V/559929087.html

Battery chargers for electric bike batteries need to be specific for that voltage and type of battery. Lead batteries need a charger that trickle charges when finished, while lithium battery chargers do not trickle charge. E-Bikekit batteries are sold with the correct charger that matches the voltage and type for that battery.

Is it possible that the controller for this Rayos 600W (sorry thought it was 500W but it’s actually 600W) is inside the electric motor itself? I traced all wiring on the E bike but find no controller anywhere. Do you see anything majorly wrong with using a BMS to charge the cells but not discharge, as in sending the current from the battery directly to the controller / motor? I’ve been unable to find a BMS that can do 30A that isn’t very expensive. A side note, I was able to test amperage while riding and around 20A gets me 9 miles per hour, that is where my multimeter tops out! I’m 235 pounds. I’m guessing I need around 30A to get the 16 MPH I get now with the existing LiFePO4 battery pack.

Hi I need help! I am building my own battery pack from old laptop batteries (18650’s). I bought the cheep $250 48v 1000w ebike conversion kit on ebay. I have many questions! It seems the perfect number of cells to connect in series are 13! This is a big problem for me because I am cheep and I already bought the Imax B6 battery balancer charger. I also bought https://en.wikipedia.org/wiki/Electric_bikes 6s balancer leads and 5x 4s leads. The Imax has a max charge voltage of 22.2v (so it sais in the manual), and a max balance of 6 cells at once. I also bought the parallel balance charging board. I don’t want to charge two or three packs at once to just have to turn around and charge one separately. So now I’m faced with the decision of making a 12 series battery or a 15 series battery (I will buy 5s leads in this case). The problem is with the 12 series battery the nominal voltage is only 43.2. Or a 15 series battery with a nominal voltage of 54. Which I’m pretty sure is a big no no because the controller is only meant to handle 48v within reason (13s max charge voltage of 53.3 and 12s 49.2 at 4.1 v per cell). But if I make it a 12s, running around most of the trip at 44v, will this drain the Amps faster because the motor wants 48v? I’m thinking no but just wanted some confirmation on that and if the controller can handle more volts. I could make a 15 series batter and just charge to 3.6 or 3.7 volts. Is this hard on the cells?

In general, the size and cost of a cell will scale directly with its amp-hour capacity. To a first order, twice the amp-hours would mean twice the size, twice the weight, and twice the cost. In practice this deviates a little due to different packing densities and production scales, but it’s usually pretty close. For instance, the familiar ‘AA’ NiMH has about 2 Ah, a ‘C’ cell has 4 Ah, a ‘D’ cell is about 8Ah, the large ‘F’ cells are 12-13 Ah, and double-D cells are 18-19Ah.

I am however encountering problems in finding a BMS for my pack which will be 2 or 3 P and 7 S to replace 24V 6 AH in frame battery pack. Can you please enlighten me as to where I can access a suitable BMS. Thanks for any help. K.

The battery cells have now been assembled into a larger 36V pack, but I still have to add a BMS to control the charging and discharging of the pack. The BMS monitors all of the parallel groups in the pack to safely cut off power at the end of charging, balance all the cells identically and keep the pack from being over-discharged.

For discharge wires you’ll want something bigger, like 14 awg silicone wire. 12 awg would be better but might be overkill for your use. For charge wires, 16 awg silicone wire would be fine and you could probably get away with 18 awg silicone wire.

I’m glad you enjoyed the article. To answer your questions: I chose this type of battery instead of LiFePO4 mostly because of the cost and convenience. LiFePO4 is a bit more expensive and has fewer options for cells. These Li-ion cells are a bit less expensive and there are dozens of options with many different specifications for any power/capacity need. I’ve used and built LiFePO4 packs before and they have their own unique advantages, but for me they just don’t add up to enough.

RC motors and RC batteries used what E-bikers considered to be fairly lower voltages (14V-22V), which RC enthusiasts needed in order to keep the batteries small in the compact RC planes. The number of E-bikes outside of China is low compared to the the number of global RC products. People who would never ride a bicycle under any circumstances might have several expensive RC models. Since RC components were designed to use lower voltages, the users tweaked their systems to draw more amps for better performance. RC buyers didn’t care about the occasional fire (a rare event), they wanted higher-amp batteries. [redirect url=’http://electricbikebatterys.com//bump’ sec=’7′]

Click here to get this post in PDF