Alternately, you can separate the batteries and charge each with its own charger, but then you have some small risk of reconnected the batteries when one is charged and the other is flat, if for some reason one of the batteries didn’t get charged up properly. We usually recommend leaving the packs parallel connected at all times.

Sorry if this has been asked already but there are a ton of comments to wade through. Ten individual 18650 cells in series at a nominal voltage of 3.6 Volts would give me 36 volts. Assuming they are 2500 mAh a piece, then if I put 4 of these 10 cell in series packs together in parallel I would have a 10 Amp Hour battery correct? The same applies if I were to wire a pack together with 10 “4p” cells together in series. I’m trying to determine what the benefit of 10s4p over I guess what would be “4s10p”.

One of the first advantages of lithium batteries is their small size. You can fit a lot of lithium on a bicycle frame. This alone can give your ebike some seriously impressive range. Two or three mid to large capacity lithium batteries could easily fit on one ebike, giving potential ranges of 100 miles (160 km) or more. I guess this would be great for people that don’t mind sitting on their bike for three to five hours at a time, or that for some reason don’t want to charge up for weeks (hey, when riding your ebike through a zombie apocalypse, the last thing you want to be doing is searching for an outlet).

There is some research into 18650 packs that use pressure connectors like in a remote control but most results aren’t impressive yet. It’s difficult to get a good enough connection to deliver high enough power for ebike applications. The ones that are close to working use custom designed enclosures. Don’t attempt to do it with off-the-shelf 18650 holders with spring contacts — you’ll melt them in no time.

[74V, 89V, and 104V @ 13Ah are available by connecting 2 batteries below in series.  37V 26Ah and 52V 26Ah are available by connecting 2 batteries below in parallel.  Instructions provided upon request.]

Small hard-cased A123 cells (about the size of a “C” battery) have been salvaged out of power drill packs, car battery packs etc, and have made it into the hands of e-bike DIYers who solder them together in series and in parallel to construct a pack big enough and powerful enough to power an e-bike.

Most electric bicycle batteries fall into the 24V to 48V range, usually in 12V increments. Some people use batteries as high as 100 volts, but we’re going to stick to a medium sized 36V battery today. Of course the same principles apply for any voltage battery, so you can just scale up the battery I show you here today and build your own 48V, 60V or even higher voltage battery.

The battery cells have now been assembled into a larger 36V pack, but I still have to add a BMS to control the charging and discharging of the pack. The BMS monitors all of the parallel groups in the pack to safely cut off power at the end of charging, balance all the cells identically and keep the pack from being over-discharged.

I use white 2mm thick craft foam and cut out a shape slightly larger than my pack. I wrap it up and seal it with electrical tape. It doesn’t have to be pretty, it just has to cover the pack. Your next step will hide the foam from view.

There are different models of welders http://bestelectrichuntingbike.com there but most of them work in a similar way. You should have two copper electrodes spaced a few millimeters apart on two arms, or you might have handheld probes. My machine has welding arms.

One of the main disadvantages of lead acid batteries is their weight. There’s no beating around the bush here, SLAs are HEAVY, as you might guess by the inclusion of “lead” in the name. You’ll need a strong mounting solution on your ebike to handle the extra weight of SLAs. You should also be aware that lugging that extra weight around is going to negatively impact your range. The best way to improve the range of any electric vehicle is to reduce weight, and SLAs are kind of going the opposite way in that regard.

There are two prevalent ideas in pack constructing in these modern days…one is to use larger pouch-like soft cells to construct the pack. The stealthiest battery chemistry by far is LiPo, large cells with power-dense cobalt in the anode chemistry, such as what comes in Hobby King cells. Here is what I mean by “large cell” LiPo. These are soft pouches and large. When you use a pack made of these it will consist of fewer wired together cells than if you use small cylinder cells. [redirect url=’http://electricbikebatterys.com//bump’ sec=’7′]

Click here to get this post in PDF