Dang, I just realized what I did wrong. I had been thinking as I connected the sense lines it was arbitrary which end of the battery was B1 and which B13, but obviously it isn’t. B1 has to be the negative end and B13 has to be the positive end. Since I already cut the sense lines to length, I’ll need to put my replacement BMS on the opposite end of the pack.

Well, I’ve finally built a pack, which in the end turned out to be a 16s6p/7p made from recycled dead laptop batteries, charging to 67.2V and has a secondary offtake for a controller on the 13s positive (i.e. to route 16s to the FETs and 13s to the control circuit). Some of the groups were OK for 12Ah from 6 cells, others needed 7 cells; I just used what I had and as I got the laptop batteries for free, it was better for me spend the time testing them than to use 80 new cells, which would have been quite expensive.

Linear packing, on the other hand, will result in a narrower pack that ends up a bit longer than offset packing. Some people say offset packing is more efficient because you can fit more cells in a smaller area by taking advantage of the space between cells. However, offset packing creates wasted space on the ends of parallel group rows where gaps form between the edge of the pack and the ‘shorter’ rows. The larger the battery pack, the less wasted space is taken up compared to the overall pack size, but the difference is negligible for most packs. For my battery, I decided to go with offset packing to make the pack shorter and fit easier into a small triangle bag.

Yes, as I understand it, Nimh and NiCd batteries charge differently. I understand lithium batteries much better than those other technologies, so don’t quote me on this, but I believe that Nimh and NiCd cells have current powered through them and the voltage control is different, as opposed to lithium cells that draw current at the charger’s preset rate and then keep drawing until the voltage floats to 4.2V, at which point the already tapering charger’s current supply is cutoff and the battery is fully charged.

When I’m experimenting with some new ebike parts and want to test different battery voltages for different speeds, I often use lead acid batteries because I can try many different voltages using very cheap batteries. Then when the results of my lead acid battery tests show me whether I want to go with 36V or 48V or 60V, for example, I then commit to buying the appropriate lithium battery.

For a complete write up on LiFePO4 care and trouble shooting read our story here. LiFePO4 cells nominal voltage is generally from 3.0-to 3.2 volts, and generally, lifepo4 is a heavier and less power dense than available LiPo batteries and is not capable of as high of amperage discharge.

Edit: if this article was helpful, you may like our newer article on the latest NCM/NCA battery chemistries, and also our article on high-performance batteries that are NOT made from LiPo. If you have narrowed your battery choice down to LiFePO4, make sure to check out Dogmans expert guide to LiFePO4 batteries.

Scooter / Light Bike. For Electric Bike Bicycle EBIKE (Conversion Type) amp Lithium Ion BATTERY. Bicycle Accessories. Case Material: ABS Aluminium alloy. Bike bag. Li-ion E-Bike Battery. Car & Truck P…

If the 4P10S multi-tube arrangement was for occasional use on long journeys, then it would be reasonable to release all of the cells and to charge them individually or in parallel to about 4V using a normal little single cell charger. Each would then be “top balanced” yes? Then mount them in the tubes, compress and connect the top terminal array and good to go. I’ve still got the quandary about whether to connect them in parallel to the main battery large output terminal.

Hi Jonathon. You’d need a female XLR cable for the discharge port on your new battery (so it can plug into your Porteur’s charge port) and you’d need a second XLR connector, this time a male, for the charge port of your new battery. That way you could use your original Porteur’s charger to charge both batteries.

Electric bikes are a reliable source of transportation. With a new battery from Batteries Plus Bulbs, you can expect the same level of reliability. Our high capacity, replacement batteries will get your scooter moving again and keep it running for a long time.

Rated Capacity: 10Ah. Recommended to be used with 36V 250W electric bicycle motor. 36V 750W 20″ Front Tire e-Bike. Charge Current: 2A. Model: Bottle Type. 1 Year manufacturer warranty for CHARGER. Use…

Please see the video’s on RCgroups under LiPo fires. A simple 2200maH 3S battery pack blew the lid off a secured 55caliber ammunition can. Putting a LiPo pack in a closed metal case is a real “bomb” waiting to happen. See all the videos on RCgroups that show what happens when a battery is over-charged or over-discharged inside air-tight causes. The real solution is to make the case have a “preferred direction” of discharge……which can be very powerful. This is done by drilling holes in the case. But it stops the explosion factor. The best thing is to have a BMS on or inside the battery. Even if the cheapy Hobby King voltage monitor, that is much better than nothing at all. Also consider putting in a voltage monitor that has a temperature guage attached. When ever the pack skin gets above 85 deg C, you are in real danger of “vent and flames”. The temperature and voltage are that two big things that can make your battery pack safe………….also store the pack where if it does go to “vent and flames”, no human being will get burned.

I just have a simple question: I would like to replace the Nicad battery 24V / 5Ah of my old Yamaha PAS XPC26 with a 7s3p and maybe try a 8s3p for something more “punchy” (hoping the controller will not burn …) . Do you think I can buy a 10s BMS and use it with a 7s or 8s battery? In this case, what should I do with the spare balance wires ?

We sell roughly equal numbers of 36V and 48V battery packs, and all of our conversion kits and controllers work fine with both 36V and 48V (or 52V) battery options. Just because 48V is a larger number, it does not mean that a 48V ebike is intrinsically better / more powerful / faster than a 36V ebike despite what the ill-informed internet will lead you to believe. However, it is true that a given motor will spin faster at a higher voltage, and usually higher speeds will correspond to more power consumption. For most of the stock hub motor kits that we offer, a 36V battery will result in a commuting speed of 30-35 kph, while wth a 48V battery will result in closer to 40-45 kph.

The exact amount of range you’ll get per battery and motor varies greatly and depends on factors like terrain, speed, weight, etc. Suffice it to say though that if you double your current battery capacity, you’ll see an approximate doubling of your range as well.

Lithium Polymer is by far the lightest battery option out there. LiPoly cells that can handle very high discharge currents are becoming widely available and are especially popular in the R/C crowd for electric airplanes and helicopters, but ebike LiPoly packs are often made with cells that are only rated to 1C or 2C, and these don’t usually deliver a very good cycle life count. The cells are produced in a thin plastic pouch rather than a metal can, making them structurally quite vulnerable unless supplied with a rigid enclosure. Although Lithium Polymer has a reputation for being volatile and failing with spectacular pyrotechnics, there are companies making cells these days that are quite stable and can pass the fullUN 38.3 overcharging and puncture tests without any flames.

I assume you mean 52V (14s, or 14 cells in series) which is a somewhat common lithium ion battery configuration. It works with most 48V setups but provides a little more power than a standard 48V (13s or 13 cell) battery. A good charger I recommend for 52V 14s batteries is this one.

What does that mean?. Well, it is like having another fit bicycle rider helping you pedal, but without their weight. No matter how hard your hills, or heavy your bike is, this motor will always work t…

If you don’t find that, there’s still a chance that it’s the problem, and that the cells simply rose up to a higher voltage and matched the others again once the load disappeared. But it also may be that the load is too high for the BMS. Do you have a cycle analyst? You could slowly increase the throttle and watch how much current you are drawing until the point of cutoff. If it’s well below 40A then you’ll know it’s not a high current cutoff.

I haven’t seen that exact BMS in the flesh before, so I can’t speak too confidently about it. The description claims it has a balancing feature and so I assume it does, but I’ve also seen BMS that were supposed to have balancing capabilities, but arrived with the balancing components missing from the board.

I’m planning on building a 10S12P pack for usage on a custom DPV (Diver Propulsion Vehicle). For packaging purposes, it would be best for me to split the battery pack in several battery modules instead of a single block of cells.

Lithium Battery technology in a bicycle is still experimental and you have to use a lot of common sense when using these batteries. However with a little education and some end user carefulness, you can use lithium batteries safely, the same as you can safely deal with putting gasoline in your riding lawn mower.

NiMH-Nickel Metal Hydride. This was the battery of choice for military application and the first-gen Prius hybrid car. Very reliable and stable, with a long cycle life. It has a high nickel content, so its expensive now (but the nickel can be re-cycled). With a low C-rate, you need a very big battery to draw high peak amps. Perhaps not a problem on a car with its huge battery pack, but on a bicycle, the smaller pack restricts the user to low amp-draw performance.

The Panasonic NCR18650B cells you have are very good quality cells. I used similar cells also made by Panasonic, but mine are the NCR18650PF (not B). The difference is that yours have more capacity (mine are 2900mAh, yours 3400mAh) but yours have a lower constant current draw rating. I don’t remember what it is off the top of my head, but I don’t think it’s much more than 5A per cell. So just make sure that you either use enough cells in parallel and/or limit your controller to not draw more power than the cells can handle. Check the cell specification sheet which you can find on Google somewhere to ensure that you are staying within the cells’ limit.

The biggest advantage of lead acid batteries is their price: dirt cheap. Lead acid batteries can be purchased from many different online retailers and local stores. Purchasing SLAs locally helps save on shipping and makes them even cheaper. Many hardware and electronic stores carry them. Even Radioshack has them, though you’ll pay more there.

However… I’m thinking about extending the range of my 250W ebike (a Greenedge CS2) by wiring a battery in parallel as a one-off project. My thinking is that as it would halve the load on each of the batteries, it would reduce output current and voltage drop under load. This I’m thinking would allow use of a simpler constructions, since the stress on http://electricbikeframes.com cell would be reduced.

4. How to Enter: The Sweepstakes must be entered by submitting an entry using the online form provided on this site. The entry must fulfill all sweepstakes requirements, as specified, to be eligible to win a prize. Entries that are not complete or do not adhere to the rules or specifications may be disqualified at the sole discretion of Electric Bike Technologies LLC. You may enter only once and you must fill in the information requested. You may not enter more times than indicated by using multiple e-mail addresses, identities or devices in an attempt to circumvent the rules. If you use fraudulent methods or otherwise attempt to circumvent the rules your submission may be removed from eligibility at the sole discretion of Electric Bike Technologies LLC.


36v 10Ah Bottle Type Battery. Rated capacity: 10Ah. 36v 14Ah Rear Rack Type Battery. Rated capacity: 14Ah. 48V 14Ah Rear Rack Type Battery. Recommended to be used with 36V 250W electric bicycle motor.

Thanks! I’m putting together a new rig I need to tow a 50lb trailer over some soft sand…I’m realizing the proper system is paramount. Any recommendations for power/battery/controllers? DIY eBikes website?

I need to build a 56-60v battery that I will be using to convert a bike with 20″ moped rims and a 48v 1500w 46.5 kmh — 28.8mph 13 * 5T winding rotor hub motor. I’m looking more for range than speed (mostly flat where I live), although I would like to top 30mph. If my math is right, in order to accomplish this I need to build a pattern that is 16s6-8p. Which 18650 cells should I choose? I’m also not sure which BMS I should use? And then which controller is best for this battery and motor setup? I’ll post the links to the parts I’m currently sourcing and let me know if you think there is a better set up or parts. Thank you

There are two prevalent ideas in pack constructing in these modern days…one is to use larger pouch-like soft cells to construct the pack. The stealthiest battery chemistry by far is LiPo, large cells with power-dense cobalt in the anode chemistry, such as what comes in Hobby King cells. Here is what I mean by “large cell” LiPo. These are soft pouches and large. When you use a pack made of these it will consist of fewer wired together cells than if you use small cylinder cells. [redirect url=’http://electricbikebatterys.com//bump’ sec=’7′]