We also maintain stock of replacement vertical seattube batteries that have been in use in the eZee bicycle line since time immemorial. If you have an eZee bike circa 2008-2012 with the Phylion lithium battery pack, you’ll be in for a serious upgrade with over twice the capacity in the same size and weight.

I use my welders on 220V, though 110V versions are available. If you have access to 220V in your home (many 110V countries have 220V lines for clothes dryers and other high power appliances) then I’d recommend sticking with 220V. In my experience the 110V models seem to have more problems than their 220V brothers. Your mileage may vary.

Features: It is so light weight , easy to transport and to take it. It is eco-friendly and safe to use it. The battery holder is so stable and sturdy. Super powerful,safe and reliable. Suitable for bi…

192 watt-hours is about the smallest battery size you would want for an ebike. Many of the store-bought ebikes have about this much capacity since it keeps the battery cost down. For people who want to actually commute reasonable distances of 40-50km, then I would recommend on the order of 400 watt-hours. While it can vary a lot with usage habits, an energy consumption of 9-10 watt-hrs / km is typical on normal direct-drive setups.

36v 10Ah Bottle Type Battery. Rated capacity: 10Ah. 36v 14Ah Rear Rack Type Battery. Rated capacity: 14Ah. 48V 14Ah Rear Rack Type Battery. Recommended to be used with 36V 250W electric bicycle motor.

What I would recommend doing is trying to ride again and when the battery cuts off, take it inside and measure the voltage of each parallel group before you try recharging it. Measure straight on the battery. If http://twowheelev.com find one group that is lower than the rest, it is likely the problem. It might have risen back up to a reasonable voltage with no load, but it can still be lower than the rest.

You’ll also notice in the following pictures that my charge and discharge wires are taped off at the ends with electrical tape. This is to keep them from accidentally coming in contact with each other and short circuiting the pack. A friend of mine recently tipped me off to another (and probably better) option to prevent shorts: add your connectors to the wires first, then solder them onto the pack and BMS. Doh!

1C charging is too high for most Li-ion. It’s too much to ask for right now, to be able to charge an entire pack in one hour. It can be done, but it’s not healthy for the cells. Aim for 0.5C at the most. I usually don’t go past 0.3C on charging.

The very first consideration when choosing a battery pack is ensuring that it can handle the current draw of your motor controller. If you have a 40A motor controller, but your battery is only rated to deliver 25A max, then either the BMS circuit will shut off the battery at full throttle, or the battery will be stressed and have reduced cycle life.  The converse, having a battery that has a higher current rating than what your controller will draw, is no problem at all. In fact, it can be quite beneficial. 

I’m glad you enjoyed the article. To answer your questions: I chose this type of battery instead of LiFePO4 mostly because of the cost and convenience. LiFePO4 is a bit more expensive and has fewer options for cells. These Li-ion cells are a bit less expensive and there are dozens of options with many different specifications for any power/capacity need. I’ve used and built LiFePO4 packs before and they have their own unique advantages, but for me they just don’t add up to enough.

A higher voltage setup therefore needs fewer amp-hours to deliver the same range. So a 24V 8Ah battery can deliver 192 watt-hours, while a 48V 4Ah pack also has 192 watt-hours. Assuming that both batteries are of the same chemistry, then you could expect they would weigh the same, cost the same, and provide the same performance on appropriately designed ebikes (ie, one designed for 24V and the other for 48V).

This is by far the most common lithium-ion chemistry used in electric bicycles. It is somewhat heavier than lithium polymer and the lithium-cobalt packs that are usually used laptops and consumer electronics, but is also safer. Most of the lithium manganese packs we have dealt with use rectangular steel canned cells and have good discharge capabilities. This chemistry holds its voltage better over the course of the battery discharge than Lithium Polymer, which tends to have a linearly declining voltage from 4.2 to 2.9 volts/cell during the course of the discharge, leading to a ebike that starts off feeling peppy and finishes feeling lethargic.

When it comes to welding your parallel groups in series, you’ll have to plan out the welds based on your welder’s physical limits. The stubby arms on my welder can only reach about two rows of cells deep, meaning I will need to add a single parallel group at a time, weld it, then add another one. If you have handheld welding probes then you could theoretically weld up your whole pack at once.

Regarding your first question: as long as your BMS has a balancing function (most do) then you do NOT need a charger that does balancing, and in fact you should not use one. The BMS takes care of all the balancing, so all you need is a simple ebike charger. What is important though is that it is a CC-CV (constant current, constant voltage) charger. Most ebike chargers are, but just check to make sure it says that somewhere in the description, or ask the vendor if you can’t find it. The CC-CV part means that the charger will supply a constant current first, bringing the battery voltage up slowly until it reaches the full voltage (54.6V for your 13S battery). Then it switches to CV mode and holds a constant voltage while it gradually backs the current down to zero, which is the ‘finishing’ part of the charge.

Bigger is better! And I know a better way batteries should be made. I use 560 of the Panasonic 18650b battery cells with 3.4AH per cell, wich in the end gave me (7kwh battery ebike!), that’s more than 300+ miles battery range easy. And I’ve learned that these batteries can be assembled like Lego blocks instead and eliminate harmful heat from soldiering, and wastful glueing. The benefit is a battery pack that can have removable, repairable, and reconfigurable battery cells! Its called (battery blocs) patiented by Shawn McCarthy. Unfortunatly its not the cheap method and requires a 3d printer to make. It spaces the cells slightly apart for better air cooling. Mine are packed into 4 PVC tubes run either at 103.6v or 51.8v. I believe along with some experts that a BMS is not required and can cause battery cells to fail early!, and a proper set voltage monitor and regulator prevents over discharge damage and you need to a timer and monitor the cell voltages with cell monitors while charging. Cooling setup would be a pluse to extend life. That’s all for now, best luck to all battery builders.

I want to build a 36v ebike battery for my 36v 500w motor. What battery you recommend for me which gives the enough current and capacity. My plane is to build a battery with 40 cells 10 in s and 4 in p,

Actually, it is not recommended to use protected cells in ebike builds. There a few reasons but the main ones are 1) unreliability of the protection circuit, 2) many points of failure, and 3) lower discharge current of individual cell protection circuits.

I am working on a similar project, and was wondering if the BMS’s that you recommended would handle any back EMF from the motor (from regenerative braking, for example.) I see that there are separate leads for charging and discharging, so I’m guessing if current flowed back through the discharge circuit that would be bad. Do you have any recommendations on a BMS (or something different) that would handle this condition?

Do you have any charts showing the different weights by voltage for lead acid vs lithium? It would be good info to be able to see the penalty paid for cheap lead acid in a mid level build when compared to the equivalent lithium setup.

Ebikeschool.com has a lot of great info, but I’ve spent countless hours putting even more info, examples, how to’s, reviews, maintenance steps and buying guides into my book and video course. They are some of the most fact-dense and info-rich ebike resources available today. So check them out to see if they can help you with your own ebike!

All lithium-ion cells are “deep cycle” meaning that they have the ability to be fully charged and discharged. The life of the battery will significantly increase if the depth of each discharge is limited to 80% of the rated capacity.

Ideally, I would buy a battery with the same type of connection and just carry the spare one unconnected and swap them over but I don’t seem to be able to find the type of battery case for sale anywhere. It’s a quick release bottle type battery that has two sprung terminals about half inch in diameter that contact with two large terminals on what I think must be the motor controller integrated into the bottom of the bottle mounting bracket. [redirect url=’http://electricbikebatterys.com//bump’ sec=’7′]