Table 2 provides a brief comparison of lead acid to LiNMC on a pack level. It should be noted that both chemistries have a wide range of parameter values, so this table is only a simplified representation of a very complex comparison.

LiFePO4/Lithium Ion/Lead Acid 120W Battery EBike Charger. 12V6A,24V3A,36V2.5A,48V2A;  Li-Ion Battery Charge Voltage = 4.2V x the number of cells in series; LiFePO4 Battery Charge Voltage = 3.55V x the number of cells in series.

Yes, it’s technically possible, but sometimes it is easier said than done. If the cells are on the edge of your battery, it’s much easier to cut them out (by the nickel, not by cutting the actual cell!) and replace them. If they are sandwiched in the middle of your pack then you’ll have to do a lot more pack surgery to get in and replace them. But yes, it’s possible to just remove them and replace them with new, good cells of the same capacity.

I am just trying to install a battery on a velomini 1 that I traded for. I don’t have a problem using the above battery as a hang on battery, batteries for a scooter don’t know if it has the BMS in it or if my current charger would charge it. It is pretty cheap.

     These advanced ‘Next-Gen’ batteries for 2018 are the most energy dense (190Wh/kg), lightest weight, and highest performing (65amp continuous, 100+amp peak) E-bike batteries on the market today at this very affordable low price.  The super high current – 100+amps on demand translates to lightning fast acceleration/high torque when used with capable motor systems!  It is amazing that batteries this compact can have such a phenomenal performance, long range, and extended lifetime.  We also use a very high power BMS (battery management system) to maximize the capability of our cells.  Battery packs are ISO9001 certified to maintain high quality standards. 

If you are excited about this improvement in battery chemistry, (NCM being 25% smaller/lighter that the fussy LiFePO4, and 300% better C-rate than the reliable and non-fussy LiMnO2) you may also be asking the question…What chemistry is next?

If you are using 2.5AH cells then yes, it will be 5AH with a 2p configuration. If you use cells with higher capacity, like Sanyo GA cells that are 3.5AH, then you’ll have a 7AH pack with only 2p. Make sure your cells can handle the current that your electric scooter (and namely the controller) will try to draw from it.

Now this step is very important: I’m going to turn the pack upside-down and perform this set of welds between the positive caps on the second parallel group and negative terminals on the third parallel group. Essentially, I’m welding on the opposite side of the pack as I did when I connected the first two parallel groups. Skip down a few pictures to see the completely welded pack to understand how the alternating side system works.

20″ 250W 36V White Folding Electric Lithium Battery B ike. Motor: 36V 250W Rear Hub Motor. The 20” Sheep is a 36V 7AH Lithium Battery powered Electric Bicycle. This Folding Electric Bicycle is the per…

Rechargeable Electric Bicycle Batteries 48V 20AH Lithium Ion Battery. These are 18650 cell based batteries (similar 18650 type cells are used in the Tesla car). Use it for ebike, scooter etrikes. Batt…

HERE ARE 99 GENIUNE LG LGABB41865 18650 2600MAH CELLS. THEY ARE IN MODEM BATTERIES, JUST NEED A FLAT SCREW DRIVER AND PRY THE CASE AT THE SEAM. THEY ARE IN 12V (3S1P) SET UP ALREADY SO YOU CAN SAVE A …

Now the game plan here is to weld parallel groups of 3 cells (or more or less for your pack depending on how much total capacity you want). To weld the cells in parallel, we’ll need to weld the tops and the bottoms of the cells together so all 3 cells share common positive and negative terminals.

Pedals: Foldable. 26\” wheels with Aluminum Alloy spokes. Opportunity: Outdoor Camping, Mountain. 36V 8AH Lithium-Ion Battery. Material: Aluminum Alloy. Wheel diameter: Approx. Head height (To ground)…

Small hard-cased A123 cells (about the size of a “C” battery) have been salvaged out of power drill packs, car battery packs etc, and have made it into the hands of e-bike DIYers who solder them together in series and in parallel to construct a pack big enough and powerful enough to power an e-bike.

It is possible to do it that way, however there are some compelling reasons not to. 1) By first joining all the series cells you would end up with multiple high voltage groups, which means both the chance and consequences of an accident are greater. When you’re working with lots of exposed batteries with nickel conductors and metal tools flying around, the last thing you want is more high voltage possibilities for shorts. 2) Doing series cells first would be come unwieldy, physically. A series group is only connected at either the top or bottom of alternating cells. Without having multiple cells side by side to add stability, a long chain of single cells will need either a pile of glue or some type of physical holder to support the chain. and 3) most battery spot welders can only reach about 2 cells deep into a pack, meaning you’d have to either add very short nickel strips to each series group connecting only two groups (which means twice the welding and twice the cell damaging heat) or have long uncontrolled nickel strips hanging off the sides, again risking shorting.

For this tutorial, I’ll be using the green Panasonic 18650PF cells shown above. Lately though I’ve been using 18650GA cells like these, which are a little bit more energy dense, meaning more battery in less space.

It’s hard to say for sure without seeing your work. I imagine that either you have a bad connection somewhere, or else you have some cells that are weakened and drop their voltage too low when a load is applied. I didn’t quite understand from your message: did you rebuild the battery using the cells in your Frog battery, or did you start with new ones? Old or damaged cells could cause the problem you are experiencing.

I’m mostly familiar with BesTech’s 72V BMS’s and haven’t used a 52V BMS from them, so I can’t give you a recommendation on a specific 52V (14s) BMS from them, sorry. I have used this 14s BMS twice and it’s worked great for me on two 14s7p packs I made with Samsung 26F cells.

Continue down the row of cells placing a weld on each cell. Then go back and do another set of welds on each cell. I like to do 2-3 welds (4-6 weld points) per cell. Any less and the weld isn’t as secure; any more and you’re just unnecessarily heating the cell. More and more welds won’t increase the current carrying ability of the nickel strip very much. The actual weld point isn’t the only place where current flows from the cell to the strip. A flat piece of nickel will be touching the whole surface of the cell cap, not just at the points of the weld. So 6 weld points is plenty to ensure good contact and connection. [redirect url=’http://electricbikebatterys.com//bump’ sec=’7′]