Bigger is better! And I know a better way batteries should be made. I use 560 of the Panasonic 18650b battery cells with 3.4AH per cell, wich in the end gave me (7kwh battery ebike!), that’s more than 300+ miles battery range easy. And I’ve learned that these batteries can be assembled like Lego blocks instead and eliminate harmful heat from soldiering, and wastful glueing. The benefit is a battery pack that can have removable, repairable, and reconfigurable battery cells! Its called (battery blocs) patiented by Shawn McCarthy. Unfortunatly its not the cheap method and requires a 3d printer to make. It spaces the cells slightly apart for better air cooling. Mine are packed into 4 PVC tubes run either at 103.6v or 51.8v. I believe along with some experts that a BMS is not required and can cause battery cells to fail early!, and a proper set voltage monitor and regulator prevents over discharge damage and you need to a timer and monitor the cell voltages with cell monitors while charging. Cooling setup would be a pluse to extend life. That’s all for now, best luck to all battery builders.

Finally found it. WOW!! Exactly what was needed. I struggle with conceptualizing verbal descriptions. You solved that! With the new JP Welder from Croatia my first welded build will soon be a reality. Thanks for all you do for eBiking!

There are formulas out there for calculating the exact size of heat shrink you need but I often find them overly complicated. Here’s how I figure out what size I need: take the height and width of the pack and add them together, and remember that number. The size of heat shrink you need when measured by the flat width (half the circumference) is between that number you found and twice that number (or ideally between slightly more than that number to slightly less than twice that number).

Used PL-350 electric bike kit, The battery does not charge. Charger is fine but only shows a red light. It sat dead for about a year. Then the controller showed about 80% after charging. Everything wo…

Since most welders have arms like mine, I’ll show you how I did it. I started by hot gluing two parallel groups together in an offset fashion, making sure the ends were opposite (one positive and one negative at each end, as shown in the picture). Then I snipped a pile of nickel strips long enough to bridge just two cells.

Dang, I just realized what I did wrong. I had been thinking as I connected the sense lines it was arbitrary which end of the battery was B1 and which B13, but obviously it isn’t. B1 has to be the negative end and B13 has to be the positive end. Since I already cut the sense lines to length, I’ll need to put my replacement BMS on the opposite end of the pack.

i have the exact same BMS but i only have 6 cells, 2p x s3 , i have 2x 3.7v @ 2000 mah batteries in parallel connected to another 2 parallel batteries in series and another parallel pack in series if that makes sense to make a total of 11.1 v @ 12mah for a small project.

I’m mostly kidding, but if you use cells that are rated for more current than you’re trying to pull from them, you’ll create a lot less waste heat and both options will be perfectly fine and healthy for the battery.

I then took my second sense wire (or your third sense wire if you have one more sense wires than parallel groups) and soldered it to the positive terminal of the second parallel group. Again, note that I’m soldering this wire to the nickel in between cells to avoid heating any cell directly.

My series connections are between each group of 3 parallel cells. So all the connections that go across the short side of the pack are parallel connections, and all the connections that run along the long end of the pack are series. It doesn’t always happen that way, but the shape of this pack forced that geometry.

You’ll also want to test out the battery with a fairly light load in the beginning. Try to go for an easy ride on the first few charges, or even better, use a discharger if you have one. I built a custom discharger out of halogen light bulbs. It allows me to fully discharge my batteries at different power levels and measure the output. This specific battery gave 8.54 Ah on its first discharge cycle at a discharge rate of 0.5c, or about 4.4 A. That result is actually pretty good, and equates to an individual average cell capacity of about 2.85 Ah, or 98% of the rated capacity.

“…The wax is micro-encapsulated within the graphite matrix. When the wax melts, there’s enough surface tension between the wax and a graphite matrix that it doesn’t leak out. You could heat the material up to 300° C (570F), and it will become soft enough for a thumbprint, but it will remain solid…”

For this reason I like to either add a second lock specifically through the handle of my lithium battery (if it’s a removable style battery) or permanently secure it to the bike so it isn’t removable at all. The second option is less convenient because it means you have to bring the charger to the ebike, but it’s a much more secure option if you find yourself locking your ebike in public often.

2. Agreement to Rules: By participating, you agree to be fully unconditionally bound by these Rules, and you represent and warrant that you meet the eligibility requirements set forth herein. In addition, you agree to accept the decisions of Electric Bike Technologies LLC, as final and binding as it relates to the content. The Sweepstakes is subject to all applicable federal, state and local laws.

Have a fire extinguisher located at the spot where you are going to be standing when you discover a fire. For example, hanging next tot he door from the house to the garage. Maybe a second one on the other side of the garage. Additionally, have a bucket that can be used to carry water to the fire – reasons explained below. Use a 5 lb. or larger ABC extinguisher, or a big CO2 extinguisher, or both.

I use white 2mm thick craft foam and cut out a shape slightly larger than my pack. I wrap it up and seal it with electrical tape. It doesn’t have to be pretty, it just has to cover the pack. Your next step will hide the foam from view.

Yes, as I understand it, Nimh and NiCd batteries charge differently. I understand lithium batteries much better than those other technologies, so don’t quote me on this, but I believe that Nimh and NiCd cells have current powered through them and the voltage control is different, as opposed to lithium cells that draw current at the charger’s preset rate and then keep drawing until the voltage floats to 4.2V, at which point the already tapering charger’s current supply is cutoff and the battery is fully charged.

Regarding that welder, I’ve used it on a 20A circuit but I don’t own it (it belongs to a friend of mine) so I can’t give you the best firsthand experience as I’ve only used it at his place on a 20A circuit. My welders, which are similar but a slightly earlier model, are run on a 20A circuit at my home. I live in Israel and we have 220V wiring at home like in Europe, so I can’t tell you for sure how it will work on 110V. If there is the option of running it off 220V in your garage or laundry room, that could be another option, but I’ve heard of people running on 110V in the US without problems so I can’t say for sure. Sorry I’m not more help batteries for electric scooters canada that front.

Do you have any charts showing the different weights by voltage for lead acid vs lithium? It would be good info to be able to see the penalty paid for cheap lead acid in a mid level build when compared to the equivalent lithium setup.

A High-performance Motor acheives a top speed of 20-30km/h with a range of 20km means your ebike commute just got easier. Folding style, portable convenient, easy storage. You can lock your bike by ap…

When comparing between battery chemistries, one of the most relevant metrics is the Energy Density in watt-hrs / kg. This figure says how heavy a battery pack will have to be to achieve a certain range. For Lead Acid it is 20-30 whrs/kg, for NiCad it is 35-40 whrs/kg, NiMH is 50-60 whrs/kg, Li-ion is ~110 whrs/kg, and Li-Polymer is up to 160 whrs / kg. Knowing these values makes it easy to project the weight of a pack without having to look up data from the manufacturer.

18650 cells, which are used in many different consumer electronics from laptops to power tools, are one of the most common battery cells employed in electric bicycle battery packs. For many years there were only mediocre 18650 cells available, but the demand by power tool makers and even some electric vehicle manufacturers for strong, high quality cells has led to the development of a number of great 18650 options in the last few years.

Actually, the protected cells aren’t a great option for ebike packs. The protection circuit on every cell can overcomplicate things, not to mention that it usually isn’t rated to handle the same current the cell could without a protection circuit.

Whether you’re shopping for a turn-key commercially available electric bike, or trying to find or build a good battery for an e-bike conversion, being able to find the right battery for an electric bike is a difficult task.  The right battery pack is the most difficult part of the e-bike equation. Keep in mind that even if you’re buying a turn-key electric bike, the lithium battery is more than likely the most expensive component in it, and…not all lithium batteries are created equal, so you should know what you are getting before you buy the ebike.

Great for DIY e-bike and powerwall builders, t ake them apart and put them all together in series in other projects and get extreme power out of what you build! These batteries are made with TWENTY (2… [redirect url=’’ sec=’7′]