In general, the size and cost of a cell will scale directly with its amp-hour capacity. To a first order, twice the amp-hours would mean twice the size, twice the weight, and twice the cost. In practice this deviates a little due to different packing densities and production scales, but it’s usually pretty close. For instance, the familiar ‘AA’ NiMH has about 2 Ah, a ‘C’ cell has 4 Ah, a ‘D’ cell is about 8Ah, the large ‘F’ cells are 12-13 Ah, and double-D cells are 18-19Ah.

That is definitely possible, but keep in mind that the 10 modules you want to connect in series will only need one wire between them. You don’t need to connect the negative and positive of each to the next – you only need a wire from the positive of module 1 to the negative of module 2, then a wire from the positive of module 2 to the negative of module 3 and so on.

10. Limitation of Liability: By entering you agree to release and hold harmless Electric Bike Technologies LLC and its subsidiaries, affiliates, advertising and promotion agencies, partners, representatives, agents, successors, assigns, employees, officers and directors from any liability, illness, injury, death, loss, litigation, claim or damage that may occur, directly or indirectly, whether caused by negligence or not, from (i) such entrant’s participation in the sweepstakes and/or his/her acceptance, possession, use, or misuse of any prize or any portion thereof, (ii) technical failures of any kind, including but not limited to the malfunctioning of any computer, cable, network, hardware or software; (iii) the unavailability or inaccessibility of any transmissions or telephone or Internet service; (iv) unauthorized human intervention in any part of the entry process or the Promotion; (v) electronic or human error which may occur in the administration of the Promotion or the processing of entries.

When I’m experimenting with some new ebike parts and want to test different battery voltages for different speeds, I often use lead acid batteries because I can try many different voltages using very cheap batteries. Then when the results of my lead acid battery tests show me whether I want to go with 36V or 48V or 60V, for example, I then commit to buying the appropriate lithium battery.

This is also why the common and affordable RC smart-chargers are powered by a separate DC power supply. Many RC enthusiasts spend a day at a park, and while flying an RC plane, they have several other battery packs that are charging from their cars 12V system.

Almost all consumer electronics that have a plug-in charger these days are powered with lithium batteries because they can store about 3 times more energy than NiMH. Small devices like cell phones, mp3 players, and other gadgets typically have lithium-polymer packs, as these can be formed in conveniently shaped thin rectangular pouches. Larger devices like laptops and the new lithium cordless power tools generally use cylindrical Lithium-ion cells of a size smaller than a ‘C’ but bigger than a ‘AA’. These are spot welded in series/parallel combination to give an appropriate voltage and capacity for the job.

Lithium aside, even Lead acid batteries can be a fire risk… including the battery used to start most automobiles. The only battery fire I have experienced myself was when a wire dropped onto a lead acid battery, shorting it, becoming white hot and burning off the insulation, scaring me out of a years growth, and being ejected from the office onto the back deck in less than 10 seconds. This experience also gave my wife a lifetime supply of snarky comments about the “big bad battery expert who set fire to a ‘safe’ battery in his office!”

A High-performance Motor acheives a top speed of 20-30km/h with a range of 20km means your ebike commute just got easier. 36V 8AH Lithium-Ion Battery. Motor: 36V 250W brushless. Rang: 18-25km(36v 6ah)…

Another disadvantage of lead acid batteries is the shorter lifespan. Most claim to be rated for over 200 cycles, but in practice I usually find many SLAs start showing their age at around 100 cycles. They’ll still work as they get up in years (or charge cycles), but you’ll begin seeing your range quickly decreasing. If you were traveling 15 miles per charge when the SLAs were new, a year later you could find yourself barely getting past 10 miles.

Introduce Yukon Trail 2018 new model Xpedition Features: 350w motor Battery: Samsung lithium battery (light weight 5 lbs with case) Speed/Mileage: up to 20MPH, up to 28 miles per full charge (varies b…

We also maintain stock of replacement vertical seattube batteries that have been in use in the eZee bicycle line since time immemorial. If you have an eZee bike circa 2008-2012 with the Phylion lithium battery pack, you’ll be in for a serious upgrade with over twice the capacity in the same size and weight.

I want to build some custom batteries, but I am hesitant to do the spot welding myself. Aren’t there modular and affordable pieces of hardware one can use to connect the batteries? Something like this?

One of the easiest ways to increase the current handling capability and range is to put two or more batteries in parallel. In general, with lithium batteries of the same nominal voltage, this is no problem. It is perfectly fine to mix old and new lithium batteries in parallel, or even batteries from different manufacturers and with different capacities, so long as they are the same voltage. We stock a parallel battery joining cable to facilitate connecting packs this way. 

Yes, as I understand it, Nimh and NiCd batteries charge differently. I understand lithium batteries much better than those other technologies, so don’t quote me on this, but I believe that Nimh and NiCd cells have current powered through them and the voltage control is different, as opposed to lithium cells that draw current at the charger’s preset rate and then keep drawing until the voltage floats to 4.2V, at which point the already tapering charger’s current supply is cutoff and the battery is fully charged.

If you have time, I’d be curious to hear about the pros and cons of this kind of approach. Is the main drawback simply the cumulative size of the plastic housing? Or is there some other limitation to this kind of hardware that makes it unsuitable?

The higher C-rate of 3C for the newer LiFePO4 (from A123) keeps these popular so you don’t need a huge pack to get fairly adequate amps. To get a continuous 24A, you’d only need a 8-Ah battery. Fairly affordable, and small enough to fit in a bike frame.

I’m mostly familiar with BesTech’s 72V BMS’s and haven’t used a 52V BMS from them, so I can’t give you a recommendation on a specific 52V (14s) BMS from them, sorry. I have used this 14s BMS twice and it’s worked great for me on two 14s7p packs I made with Samsung 26F cells.

When it comes to choosing a BMS, the number of cells you have in parallel aren’t important. Only the number of series cells matters. The same BMS will work with 1 or 100 cells in parallel, as the voltage stays the same regardless of the number of parallel cells.

Most commercially available 36V packs are around 10Ah, meaning our pack will be just a bit smaller. We could have also gone with a 4p configuration giving us 11.6 Ah, which would have been a slightly bigger and more expensive pack. The final capacity is totally defined by your own needs. Bigger isn’t always better, especially if you’re fitting a battery into tight spaces.

Lithium batteries made specially for ebikes often come with specific bicycle mounting points making them easy to bolt to the bike frame, seat post or rear rack. If you go with a different type of lithium battery without ebike specific mounts, you’ll likely have to put it in a bag on the bike, which is still a good option, and one that I http://electricbikemotor.net prefer sometimes. (Link to blog post of mine about center frame triangle batteries).

18650 cells, which are used in many different consumer electronics from laptops to power tools, are one of the most common battery cells employed in electric bicycle battery packs. For many years there were only mediocre 18650 cells available, but the demand by power tool makers and even some electric vehicle manufacturers for strong, high quality cells has led to the development of a number of great 18650 options in the last few years.

However, the description says The monolithic 12V batteries do not have any PCM (any electronics) inside. They consist of finely balanced cells with identical perfomace. The battery must be managed as a single monolithic 12V block.

hello, i want to add a ignition switch to my battery pack(10s4p,samsung 18650-26j cells) for on and off the battery, i bought an ignition from ebay(http://www.ebay.com/itm/321748146034?_trksid=p2055119.m1438.l2649&ssPageName=STRK%3AMEBIDX%3AIT),i planed to install this key switch in series to my positive wire from battery pack, but discharge current is up to 20 Amps, so i couldn’t install that switch in series, could you please suggest me an idea on how to install this ignition switch, do i install a relay or what can i do?

You can actually buy an E-bike NMC pack right now, but it remains to be seen which retailer will prove to be the most reliable. An NMC pack will be about 25% smaller and lighter than an equivalent LiFePO4/LiMnO2 pack. The extensive testing done by Zero, Tesla, and Nissan gives us a great deal of confidence in the safe and effective use of NMC over the next year…

craig it should not damage your controller. When you connect two batteries together in parallel it will actually extend the life of both batteries because you are not taking as much of a toll on them when discharging and hopefully not running them down as low.

Thanks for the kind words! Unfortunately I don’t have access to a schematic. I got that BMS from a Chinese reseller and I would be surprised if even he has a schematic. I have seen people parallel BMS boards on a single pack to get higher current output but I haven’t tried that myself. [redirect url=’http://electricbikebatterys.com//bump’ sec=’7′]